Topic: How a Sailboat Works: Hull Type

Primary Goal: After this lesson, students should be able to determine the proper hull designs necessary to compliment the various rigs.

Lesson Objectives:

- Students will learn the various hull designs and compare and contrast
- Students should understand the pros and cons to earlier sailboat designs
- After this lesson, students should be able to reference ancient designs and effectively integrate them into their own design later in the course

Lesson Outline:

- **I.** A sailboat's hull is important for many reasons, including the following:
 - **a.** Stability
 - **b.** Safety
 - c. Comfort at Sea
 - **d.** Load Carrying Capacity
 - **e.** Speed
- II. Sailboats can be identified by the number of her hulls
 - **a.** Monohull single hull
 - **b.** Catamaran 2 hulls
 - **c.** Trimaran 3 hulls
 - **d.** Discuss how multi-hull boats are generally faster than monohull sailboats
 - i. There are many reasons, but one primary reason is the reduced drag. A multihull does not need additional weight or ballast for stability since it has multiple hulls and thus a wider beam (breadth).

III. Keel

- **a.** Full Keel
 - i. Pros easy to steer on a straight course through the water and not as sensitive to minor course adjustments
 - **ii.** Cons slower to turn and increased drag due to large amount of surface area below the waterline
- **b.** Fin Keel
 - i. Pros turns quickly around the keel and able to adjust course faster than a full-keel
 - **ii.** Cons smaller keel provides less resistance to forces that could cause a sailboat to go off course. Helmsman must be attentive when at the helm.
- c. Bulb Keel
 - i. Provides more ballast weight by concentrating a large amount of weight
 - ii. This can help improve a boats stability

- **d.** Winged Keel
 - i. Provides additional hydrodynamic stability
 - **ii.** A winged keel sailboat has the added benefit of stability while also maintaining a reasonably shallow draft capable of sailing in shallow water
- IV. Hull Displacement
 - **a.** The amount of water a sailboat shoves to the side while floating
 - **b.** The weight of a sailboat is equal to the weight of the water it displaces
 - i. Discuss the difference in weight between salt water vs. fresh water (salt water weights slightly more than fresh)
- V. Displacement Length Ratio
 - **a.** A measurement used to describe whether a boat is a heavy or light displacement hull
 - **b.** This can help tell a boat's purpose and performance
 - i. Light Displacement Hull 200 or less
 - ii. Medium Displacement Hull 200-350
 - iii. Heavy Displacement Hull 350 or more
 - **c.** When calculating the D/L ratio, it is important to use the sailboat's Load Waterline Length (LWL)
 - i. This is the hull's length where it comes out of the water at the bow and the stern
 - **ii.** This is critical, because it measures the length of the boat that is exposed to the water
 - **d.** Racing Sailboats will generally have a much lighter D/L ratio
- **VI.** Ballast Displacement Ratio
 - **a.** The weight in the keel and bottom of the boat that counter's the sailboat's tip or "heel"
 - **b.** This is a good indicator of the stability of the sailboat and can help tell us the boat's purpose (offshore cruising vs. racing)
 - **c.** By comparing a boat's ballast to her displacement, you can make this determination
 - i. Coastal 35% or less
 - ii. Average 35% 45%
 - iii. Offshore 45% or greater
 - **d.** These measurements do not hold true for all boats, but can be used as a general guideline

Exercises/Activities:

Provide students with a worksheet showing the different sailboats and allow the students to perform the various calculations.

